The NEBridge Golden Gate Assembly Kit (BsmBI-v2) contains an optimized mix of BsmBI-v2 and T4 DNA Ligase. BsmBI-v2 has been engineered by NEB and outperforms BsmBI in Golden Gate Assemblies. Together these enzymes can direct the assembly of multiple inserts/modules and also single insert/library generation cloning with single insert(s) using the Golden Gate approach. The pGGAselect destination plasmid is also provided, which provides a backbone for your assembly. This versatile destination construct has flanking recognition sites in the correct orientation for BsmBI-directed assemblies, and also BsaI- and BbsI-directed assemblies, enabling the destination plasmid to conveniently be used with all three of the most commonly used Type IIS restriction enzymes used for Golden Gate Assembly. It features convenient restriction enzyme sites for subcloning, and has T7/SP6 promoter sequences to enable in vitro transcription.
The efficient and seamless assembly of DNA fragments, commonly referred to as Golden Gate Assembly (1,2), had its origins in 1996, when for the first time it was shown that multiple inserts could be assembled into a vector backbone using only the sequential (3) or simultaneous (4) activities of a single Type IIS restriction enzyme and T4 DNA Ligase.
Type IIS restriction enzymes bind to their recognition sites but cut the DNA downstream from that site at a positional, not sequence- specific, cut site. Thus, a single Type IIS restriction enzyme can be used to generate DNA fragments with unique overhangs. As an example, BsmBI has a recognition site of CGTCTC(N1/N5), where the CGTCTC represents the recognition/binding site, and the N1/N5 indicates the cut site is one base downstream on the top strand, and five bases downstream on the bottom strand. Assembly of digested fragments proceeds through annealing of complementary four base overhangs on adjacent fragments. The digested fragments and the final assembly no longer contain Type IIS restriction enzyme recognition sites, so no further cutting is possible. The assembly product accumulates with time.
While particularly useful for multi-fragment assemblies such as Transcription Activator Like Effectors (TALEs)(5) and TALEs fused to a FokI nuclease catalytic domain (TALENs)(6), the Golden Gate method can also be used for cloning of single inserts and inserts from diverse populations that enable library creation, and multi-site mutagenesis involved in directed evolution (7).
Please note that while general descriptions regarding Golden Gate Assembly use the BsmBI nomenclature, this kit and protocols feature the specific engineered form optimized for Golden Gate Assembly, BsmBI-v2.
To learn more about the Golden Gate Assembly workflow, watch this video tutorial.
The following reagents are supplied with this product:
NEB # | Component Name | Component # | Stored at (°C) | Amount | Concentration |
Use of the NEB Golden Gate Assembly Tool (GoldenGate.neb.com) is strongly recommended; this tool will check insert sequences for internal Type IIS restriction enzyme sites and design primers to amplify your inserts for Golden Gate Assembly. The primers will feature 6 bases at the 5′ end flanking the recognition site, the recognition site itself, plus the 4-base overhangs that determine correct annealing and ligation of the inserts. All overhangs will automatically be designed as non-palindromic (to eliminate self-insert ligations), unique, and in the correct orientations to ensure correct assembly.
Research at NEB has led to an increased understanding of ligase fidelity, including the development of a comprehensive method for profiling end-joining ligation fidelity in order to predict which overhangs will result in greater accuracy (Potapov, V. et al. (2018) ACS Synth. Biol., 7, 2665–2674.). This ligase fidelity information can be used in conjunction with the NEB Golden Gate Assembly kits to achieve high efficiency and accurate complex assemblies. Please visit www.neb.com/GoldenGate for more information.
NEB has developed ligase fidelity tools to facilitate the design of high-fidelity Golden Gate Assemblies:
All tools are available at ligasefidelity.neb.com
Standard Golden Gate protocol suggests using 30 cycles, alternating between restriction and cutting. BsaI-HFv2, BsmBI-v2 and T4 DNA Ligase are very stable, allowing cycling up to 60 cycles, with high efficiency and fidelity. Consider whether your workflow would be enhanced by adding more cycles.
Products and content are covered by one or more patents, trademarks and/or copyrights owned or controlled by New England Biolabs, Inc (NEB). The use of trademark symbols does not necessarily indicate that the name is trademarked in the country where it is being read; it indicates where the content was originally developed. The use of this product may require the buyer to obtain additional third-party intellectual property rights for certain applications. For more information, please email busdev@neb.com.
This product is intended for research purposes only. This product is not intended to be used for therapeutic or diagnostic purposes in humans or animals.
New England Biolabs (NEB) is committed to practicing ethical science – we believe it is our job as researchers to ask the important questions that when answered will help preserve our quality of life and the world that we live in. However, this research should always be done in safe and ethical manner. Learn more.